metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.140D10, C10.722+ (1+4), C10.892- (1+4), (C2×Q8).83D10, C4.4D4.9D5, (C2×D4).109D10, (C2×C20).78C23, C22⋊C4.34D10, C20.6Q8⋊28C2, Dic5⋊Q8⋊23C2, (C4×C20).221C22, (C2×C10).216C24, C4⋊Dic5.50C22, C2.74(D4⋊6D10), C23.38(C22×D5), (D4×C10).209C22, C23.D10⋊38C2, (C22×C10).46C23, (Q8×C10).125C22, C22.237(C23×D5), Dic5.14D4⋊39C2, C23.D5.53C22, C5⋊3(C22.57C24), (C4×Dic5).140C22, (C2×Dic5).111C23, C10.D4.83C22, C23.18D10.6C2, C2.50(D4.10D10), (C2×Dic10).182C22, (C22×Dic5).141C22, (C5×C4.4D4).7C2, (C2×C4).192(C22×D5), (C5×C22⋊C4).63C22, SmallGroup(320,1344)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 614 in 196 conjugacy classes, 91 normal (17 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×13], C22, C22 [×6], C5, C2×C4, C2×C4 [×4], C2×C4 [×10], D4, Q8 [×3], C23 [×2], C10, C10 [×2], C10 [×2], C42, C42 [×2], C22⋊C4 [×4], C22⋊C4 [×6], C4⋊C4 [×16], C22×C4 [×2], C2×D4, C2×Q8, C2×Q8 [×2], Dic5 [×8], C20 [×5], C2×C10, C2×C10 [×6], C22⋊Q8 [×4], C22.D4 [×2], C4.4D4, C42.C2 [×2], C42⋊2C2 [×4], C4⋊Q8 [×2], Dic10 [×2], C2×Dic5 [×8], C2×Dic5 [×2], C2×C20, C2×C20 [×4], C5×D4, C5×Q8, C22×C10 [×2], C22.57C24, C4×Dic5 [×2], C10.D4 [×12], C4⋊Dic5 [×4], C23.D5 [×6], C4×C20, C5×C22⋊C4 [×4], C2×Dic10 [×2], C22×Dic5 [×2], D4×C10, Q8×C10, C20.6Q8 [×2], Dic5.14D4 [×4], C23.D10 [×4], C23.18D10 [×2], Dic5⋊Q8 [×2], C5×C4.4D4, C42.140D10
Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C24, D10 [×7], 2+ (1+4), 2- (1+4) [×2], C22×D5 [×7], C22.57C24, C23×D5, D4⋊6D10, D4.10D10 [×2], C42.140D10
Generators and relations
G = < a,b,c,d | a4=b4=c10=1, d2=b2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c-1 >
(1 135 40 142)(2 131 36 148)(3 137 37 144)(4 133 38 150)(5 139 39 146)(6 61 31 42)(7 67 32 48)(8 63 33 44)(9 69 34 50)(10 65 35 46)(11 143 16 136)(12 149 17 132)(13 145 18 138)(14 141 19 134)(15 147 20 140)(21 47 29 66)(22 43 30 62)(23 49 26 68)(24 45 27 64)(25 41 28 70)(51 103 56 155)(52 151 57 109)(53 105 58 157)(54 153 59 101)(55 107 60 159)(71 106 76 158)(72 154 77 102)(73 108 78 160)(74 156 79 104)(75 110 80 152)(81 115 86 128)(82 124 87 111)(83 117 88 130)(84 126 89 113)(85 119 90 122)(91 114 96 127)(92 123 97 120)(93 116 98 129)(94 125 99 112)(95 118 100 121)
(1 117 15 112)(2 113 11 118)(3 119 12 114)(4 115 13 120)(5 111 14 116)(6 104 21 109)(7 110 22 105)(8 106 23 101)(9 102 24 107)(10 108 25 103)(16 121 36 126)(17 127 37 122)(18 123 38 128)(19 129 39 124)(20 125 40 130)(26 153 33 158)(27 159 34 154)(28 155 35 160)(29 151 31 156)(30 157 32 152)(41 56 65 78)(42 79 66 57)(43 58 67 80)(44 71 68 59)(45 60 69 72)(46 73 70 51)(47 52 61 74)(48 75 62 53)(49 54 63 76)(50 77 64 55)(81 138 97 150)(82 141 98 139)(83 140 99 142)(84 143 100 131)(85 132 91 144)(86 145 92 133)(87 134 93 146)(88 147 94 135)(89 136 95 148)(90 149 96 137)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 27 15 34)(2 26 11 33)(3 30 12 32)(4 29 13 31)(5 28 14 35)(6 38 21 18)(7 37 22 17)(8 36 23 16)(9 40 24 20)(10 39 25 19)(41 141 65 139)(42 150 66 138)(43 149 67 137)(44 148 68 136)(45 147 69 135)(46 146 70 134)(47 145 61 133)(48 144 62 132)(49 143 63 131)(50 142 64 140)(51 82 73 98)(52 81 74 97)(53 90 75 96)(54 89 76 95)(55 88 77 94)(56 87 78 93)(57 86 79 92)(58 85 80 91)(59 84 71 100)(60 83 72 99)(101 113 106 118)(102 112 107 117)(103 111 108 116)(104 120 109 115)(105 119 110 114)(121 153 126 158)(122 152 127 157)(123 151 128 156)(124 160 129 155)(125 159 130 154)
G:=sub<Sym(160)| (1,135,40,142)(2,131,36,148)(3,137,37,144)(4,133,38,150)(5,139,39,146)(6,61,31,42)(7,67,32,48)(8,63,33,44)(9,69,34,50)(10,65,35,46)(11,143,16,136)(12,149,17,132)(13,145,18,138)(14,141,19,134)(15,147,20,140)(21,47,29,66)(22,43,30,62)(23,49,26,68)(24,45,27,64)(25,41,28,70)(51,103,56,155)(52,151,57,109)(53,105,58,157)(54,153,59,101)(55,107,60,159)(71,106,76,158)(72,154,77,102)(73,108,78,160)(74,156,79,104)(75,110,80,152)(81,115,86,128)(82,124,87,111)(83,117,88,130)(84,126,89,113)(85,119,90,122)(91,114,96,127)(92,123,97,120)(93,116,98,129)(94,125,99,112)(95,118,100,121), (1,117,15,112)(2,113,11,118)(3,119,12,114)(4,115,13,120)(5,111,14,116)(6,104,21,109)(7,110,22,105)(8,106,23,101)(9,102,24,107)(10,108,25,103)(16,121,36,126)(17,127,37,122)(18,123,38,128)(19,129,39,124)(20,125,40,130)(26,153,33,158)(27,159,34,154)(28,155,35,160)(29,151,31,156)(30,157,32,152)(41,56,65,78)(42,79,66,57)(43,58,67,80)(44,71,68,59)(45,60,69,72)(46,73,70,51)(47,52,61,74)(48,75,62,53)(49,54,63,76)(50,77,64,55)(81,138,97,150)(82,141,98,139)(83,140,99,142)(84,143,100,131)(85,132,91,144)(86,145,92,133)(87,134,93,146)(88,147,94,135)(89,136,95,148)(90,149,96,137), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,27,15,34)(2,26,11,33)(3,30,12,32)(4,29,13,31)(5,28,14,35)(6,38,21,18)(7,37,22,17)(8,36,23,16)(9,40,24,20)(10,39,25,19)(41,141,65,139)(42,150,66,138)(43,149,67,137)(44,148,68,136)(45,147,69,135)(46,146,70,134)(47,145,61,133)(48,144,62,132)(49,143,63,131)(50,142,64,140)(51,82,73,98)(52,81,74,97)(53,90,75,96)(54,89,76,95)(55,88,77,94)(56,87,78,93)(57,86,79,92)(58,85,80,91)(59,84,71,100)(60,83,72,99)(101,113,106,118)(102,112,107,117)(103,111,108,116)(104,120,109,115)(105,119,110,114)(121,153,126,158)(122,152,127,157)(123,151,128,156)(124,160,129,155)(125,159,130,154)>;
G:=Group( (1,135,40,142)(2,131,36,148)(3,137,37,144)(4,133,38,150)(5,139,39,146)(6,61,31,42)(7,67,32,48)(8,63,33,44)(9,69,34,50)(10,65,35,46)(11,143,16,136)(12,149,17,132)(13,145,18,138)(14,141,19,134)(15,147,20,140)(21,47,29,66)(22,43,30,62)(23,49,26,68)(24,45,27,64)(25,41,28,70)(51,103,56,155)(52,151,57,109)(53,105,58,157)(54,153,59,101)(55,107,60,159)(71,106,76,158)(72,154,77,102)(73,108,78,160)(74,156,79,104)(75,110,80,152)(81,115,86,128)(82,124,87,111)(83,117,88,130)(84,126,89,113)(85,119,90,122)(91,114,96,127)(92,123,97,120)(93,116,98,129)(94,125,99,112)(95,118,100,121), (1,117,15,112)(2,113,11,118)(3,119,12,114)(4,115,13,120)(5,111,14,116)(6,104,21,109)(7,110,22,105)(8,106,23,101)(9,102,24,107)(10,108,25,103)(16,121,36,126)(17,127,37,122)(18,123,38,128)(19,129,39,124)(20,125,40,130)(26,153,33,158)(27,159,34,154)(28,155,35,160)(29,151,31,156)(30,157,32,152)(41,56,65,78)(42,79,66,57)(43,58,67,80)(44,71,68,59)(45,60,69,72)(46,73,70,51)(47,52,61,74)(48,75,62,53)(49,54,63,76)(50,77,64,55)(81,138,97,150)(82,141,98,139)(83,140,99,142)(84,143,100,131)(85,132,91,144)(86,145,92,133)(87,134,93,146)(88,147,94,135)(89,136,95,148)(90,149,96,137), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,27,15,34)(2,26,11,33)(3,30,12,32)(4,29,13,31)(5,28,14,35)(6,38,21,18)(7,37,22,17)(8,36,23,16)(9,40,24,20)(10,39,25,19)(41,141,65,139)(42,150,66,138)(43,149,67,137)(44,148,68,136)(45,147,69,135)(46,146,70,134)(47,145,61,133)(48,144,62,132)(49,143,63,131)(50,142,64,140)(51,82,73,98)(52,81,74,97)(53,90,75,96)(54,89,76,95)(55,88,77,94)(56,87,78,93)(57,86,79,92)(58,85,80,91)(59,84,71,100)(60,83,72,99)(101,113,106,118)(102,112,107,117)(103,111,108,116)(104,120,109,115)(105,119,110,114)(121,153,126,158)(122,152,127,157)(123,151,128,156)(124,160,129,155)(125,159,130,154) );
G=PermutationGroup([(1,135,40,142),(2,131,36,148),(3,137,37,144),(4,133,38,150),(5,139,39,146),(6,61,31,42),(7,67,32,48),(8,63,33,44),(9,69,34,50),(10,65,35,46),(11,143,16,136),(12,149,17,132),(13,145,18,138),(14,141,19,134),(15,147,20,140),(21,47,29,66),(22,43,30,62),(23,49,26,68),(24,45,27,64),(25,41,28,70),(51,103,56,155),(52,151,57,109),(53,105,58,157),(54,153,59,101),(55,107,60,159),(71,106,76,158),(72,154,77,102),(73,108,78,160),(74,156,79,104),(75,110,80,152),(81,115,86,128),(82,124,87,111),(83,117,88,130),(84,126,89,113),(85,119,90,122),(91,114,96,127),(92,123,97,120),(93,116,98,129),(94,125,99,112),(95,118,100,121)], [(1,117,15,112),(2,113,11,118),(3,119,12,114),(4,115,13,120),(5,111,14,116),(6,104,21,109),(7,110,22,105),(8,106,23,101),(9,102,24,107),(10,108,25,103),(16,121,36,126),(17,127,37,122),(18,123,38,128),(19,129,39,124),(20,125,40,130),(26,153,33,158),(27,159,34,154),(28,155,35,160),(29,151,31,156),(30,157,32,152),(41,56,65,78),(42,79,66,57),(43,58,67,80),(44,71,68,59),(45,60,69,72),(46,73,70,51),(47,52,61,74),(48,75,62,53),(49,54,63,76),(50,77,64,55),(81,138,97,150),(82,141,98,139),(83,140,99,142),(84,143,100,131),(85,132,91,144),(86,145,92,133),(87,134,93,146),(88,147,94,135),(89,136,95,148),(90,149,96,137)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,27,15,34),(2,26,11,33),(3,30,12,32),(4,29,13,31),(5,28,14,35),(6,38,21,18),(7,37,22,17),(8,36,23,16),(9,40,24,20),(10,39,25,19),(41,141,65,139),(42,150,66,138),(43,149,67,137),(44,148,68,136),(45,147,69,135),(46,146,70,134),(47,145,61,133),(48,144,62,132),(49,143,63,131),(50,142,64,140),(51,82,73,98),(52,81,74,97),(53,90,75,96),(54,89,76,95),(55,88,77,94),(56,87,78,93),(57,86,79,92),(58,85,80,91),(59,84,71,100),(60,83,72,99),(101,113,106,118),(102,112,107,117),(103,111,108,116),(104,120,109,115),(105,119,110,114),(121,153,126,158),(122,152,127,157),(123,151,128,156),(124,160,129,155),(125,159,130,154)])
Matrix representation ►G ⊆ GL8(𝔽41)
| 11 | 32 | 0 | 0 | 0 | 0 | 0 | 0 |
| 9 | 30 | 0 | 0 | 0 | 0 | 0 | 0 |
| 32 | 0 | 2 | 32 | 0 | 0 | 0 | 0 |
| 28 | 9 | 37 | 39 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 2 | 13 | 33 | 35 |
| 0 | 0 | 0 | 0 | 28 | 39 | 33 | 39 |
| 0 | 0 | 0 | 0 | 36 | 15 | 30 | 28 |
| 0 | 0 | 0 | 0 | 20 | 21 | 22 | 11 |
| 0 | 0 | 34 | 1 | 0 | 0 | 0 | 0 |
| 40 | 40 | 39 | 40 | 0 | 0 | 0 | 0 |
| 23 | 23 | 1 | 0 | 0 | 0 | 0 | 0 |
| 37 | 38 | 7 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 38 | 38 |
| 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 |
| 0 | 0 | 0 | 0 | 0 | 13 | 40 | 0 |
| 0 | 0 | 0 | 0 | 28 | 28 | 0 | 40 |
| 40 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
| 34 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
| 13 | 6 | 35 | 34 | 0 | 0 | 0 | 0 |
| 16 | 8 | 6 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 35 | 35 | 0 | 0 |
| 0 | 0 | 0 | 0 | 6 | 40 | 0 | 0 |
| 0 | 0 | 0 | 0 | 37 | 28 | 7 | 6 |
| 0 | 0 | 0 | 0 | 0 | 9 | 34 | 0 |
| 24 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 17 | 0 | 0 | 0 | 0 | 0 | 0 |
| 17 | 0 | 20 | 17 | 0 | 0 | 0 | 0 |
| 38 | 1 | 15 | 21 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 32 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 28 | 9 | 0 | 0 |
| 0 | 0 | 0 | 0 | 36 | 35 | 19 | 28 |
| 0 | 0 | 0 | 0 | 40 | 6 | 31 | 22 |
G:=sub<GL(8,GF(41))| [11,9,32,28,0,0,0,0,32,30,0,9,0,0,0,0,0,0,2,37,0,0,0,0,0,0,32,39,0,0,0,0,0,0,0,0,2,28,36,20,0,0,0,0,13,39,15,21,0,0,0,0,33,33,30,22,0,0,0,0,35,39,28,11],[0,40,23,37,0,0,0,0,0,40,23,38,0,0,0,0,34,39,1,7,0,0,0,0,1,40,0,0,0,0,0,0,0,0,0,0,1,0,0,28,0,0,0,0,0,1,13,28,0,0,0,0,38,3,40,0,0,0,0,0,38,0,0,40],[40,34,13,16,0,0,0,0,7,7,6,8,0,0,0,0,0,0,35,6,0,0,0,0,0,0,34,0,0,0,0,0,0,0,0,0,35,6,37,0,0,0,0,0,35,40,28,9,0,0,0,0,0,0,7,34,0,0,0,0,0,0,6,0],[24,3,17,38,0,0,0,0,40,17,0,1,0,0,0,0,0,0,20,15,0,0,0,0,0,0,17,21,0,0,0,0,0,0,0,0,32,28,36,40,0,0,0,0,0,9,35,6,0,0,0,0,0,0,19,31,0,0,0,0,0,0,28,22] >;
47 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | ··· | 4E | 4F | ··· | 4M | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20L | 20M | 20N | 20O | 20P |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 |
| size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | ··· | 4 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
47 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | |
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | D10 | D10 | D10 | D10 | 2+ (1+4) | 2- (1+4) | D4⋊6D10 | D4.10D10 |
| kernel | C42.140D10 | C20.6Q8 | Dic5.14D4 | C23.D10 | C23.18D10 | Dic5⋊Q8 | C5×C4.4D4 | C4.4D4 | C42 | C22⋊C4 | C2×D4 | C2×Q8 | C10 | C10 | C2 | C2 |
| # reps | 1 | 2 | 4 | 4 | 2 | 2 | 1 | 2 | 2 | 8 | 2 | 2 | 1 | 2 | 4 | 8 |
In GAP, Magma, Sage, TeX
C_4^2._{140}D_{10} % in TeX
G:=Group("C4^2.140D10"); // GroupNames label
G:=SmallGroup(320,1344);
// by ID
G=gap.SmallGroup(320,1344);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,758,219,184,1571,570,297,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^-1>;
// generators/relations