Copied to
clipboard

?

G = C42.140D10order 320 = 26·5

140th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.140D10, C10.722+ (1+4), C10.892- (1+4), (C2×Q8).83D10, C4.4D4.9D5, (C2×D4).109D10, (C2×C20).78C23, C22⋊C4.34D10, C20.6Q828C2, Dic5⋊Q823C2, (C4×C20).221C22, (C2×C10).216C24, C4⋊Dic5.50C22, C2.74(D46D10), C23.38(C22×D5), (D4×C10).209C22, C23.D1038C2, (C22×C10).46C23, (Q8×C10).125C22, C22.237(C23×D5), Dic5.14D439C2, C23.D5.53C22, C53(C22.57C24), (C4×Dic5).140C22, (C2×Dic5).111C23, C10.D4.83C22, C23.18D10.6C2, C2.50(D4.10D10), (C2×Dic10).182C22, (C22×Dic5).141C22, (C5×C4.4D4).7C2, (C2×C4).192(C22×D5), (C5×C22⋊C4).63C22, SmallGroup(320,1344)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.140D10
C1C5C10C2×C10C2×Dic5C22×Dic5Dic5.14D4 — C42.140D10
C5C2×C10 — C42.140D10

Subgroups: 614 in 196 conjugacy classes, 91 normal (17 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×13], C22, C22 [×6], C5, C2×C4, C2×C4 [×4], C2×C4 [×10], D4, Q8 [×3], C23 [×2], C10, C10 [×2], C10 [×2], C42, C42 [×2], C22⋊C4 [×4], C22⋊C4 [×6], C4⋊C4 [×16], C22×C4 [×2], C2×D4, C2×Q8, C2×Q8 [×2], Dic5 [×8], C20 [×5], C2×C10, C2×C10 [×6], C22⋊Q8 [×4], C22.D4 [×2], C4.4D4, C42.C2 [×2], C422C2 [×4], C4⋊Q8 [×2], Dic10 [×2], C2×Dic5 [×8], C2×Dic5 [×2], C2×C20, C2×C20 [×4], C5×D4, C5×Q8, C22×C10 [×2], C22.57C24, C4×Dic5 [×2], C10.D4 [×12], C4⋊Dic5 [×4], C23.D5 [×6], C4×C20, C5×C22⋊C4 [×4], C2×Dic10 [×2], C22×Dic5 [×2], D4×C10, Q8×C10, C20.6Q8 [×2], Dic5.14D4 [×4], C23.D10 [×4], C23.18D10 [×2], Dic5⋊Q8 [×2], C5×C4.4D4, C42.140D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C24, D10 [×7], 2+ (1+4), 2- (1+4) [×2], C22×D5 [×7], C22.57C24, C23×D5, D46D10, D4.10D10 [×2], C42.140D10

Generators and relations
 G = < a,b,c,d | a4=b4=c10=1, d2=b2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 135 40 142)(2 131 36 148)(3 137 37 144)(4 133 38 150)(5 139 39 146)(6 61 31 42)(7 67 32 48)(8 63 33 44)(9 69 34 50)(10 65 35 46)(11 143 16 136)(12 149 17 132)(13 145 18 138)(14 141 19 134)(15 147 20 140)(21 47 29 66)(22 43 30 62)(23 49 26 68)(24 45 27 64)(25 41 28 70)(51 103 56 155)(52 151 57 109)(53 105 58 157)(54 153 59 101)(55 107 60 159)(71 106 76 158)(72 154 77 102)(73 108 78 160)(74 156 79 104)(75 110 80 152)(81 115 86 128)(82 124 87 111)(83 117 88 130)(84 126 89 113)(85 119 90 122)(91 114 96 127)(92 123 97 120)(93 116 98 129)(94 125 99 112)(95 118 100 121)
(1 117 15 112)(2 113 11 118)(3 119 12 114)(4 115 13 120)(5 111 14 116)(6 104 21 109)(7 110 22 105)(8 106 23 101)(9 102 24 107)(10 108 25 103)(16 121 36 126)(17 127 37 122)(18 123 38 128)(19 129 39 124)(20 125 40 130)(26 153 33 158)(27 159 34 154)(28 155 35 160)(29 151 31 156)(30 157 32 152)(41 56 65 78)(42 79 66 57)(43 58 67 80)(44 71 68 59)(45 60 69 72)(46 73 70 51)(47 52 61 74)(48 75 62 53)(49 54 63 76)(50 77 64 55)(81 138 97 150)(82 141 98 139)(83 140 99 142)(84 143 100 131)(85 132 91 144)(86 145 92 133)(87 134 93 146)(88 147 94 135)(89 136 95 148)(90 149 96 137)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 27 15 34)(2 26 11 33)(3 30 12 32)(4 29 13 31)(5 28 14 35)(6 38 21 18)(7 37 22 17)(8 36 23 16)(9 40 24 20)(10 39 25 19)(41 141 65 139)(42 150 66 138)(43 149 67 137)(44 148 68 136)(45 147 69 135)(46 146 70 134)(47 145 61 133)(48 144 62 132)(49 143 63 131)(50 142 64 140)(51 82 73 98)(52 81 74 97)(53 90 75 96)(54 89 76 95)(55 88 77 94)(56 87 78 93)(57 86 79 92)(58 85 80 91)(59 84 71 100)(60 83 72 99)(101 113 106 118)(102 112 107 117)(103 111 108 116)(104 120 109 115)(105 119 110 114)(121 153 126 158)(122 152 127 157)(123 151 128 156)(124 160 129 155)(125 159 130 154)

G:=sub<Sym(160)| (1,135,40,142)(2,131,36,148)(3,137,37,144)(4,133,38,150)(5,139,39,146)(6,61,31,42)(7,67,32,48)(8,63,33,44)(9,69,34,50)(10,65,35,46)(11,143,16,136)(12,149,17,132)(13,145,18,138)(14,141,19,134)(15,147,20,140)(21,47,29,66)(22,43,30,62)(23,49,26,68)(24,45,27,64)(25,41,28,70)(51,103,56,155)(52,151,57,109)(53,105,58,157)(54,153,59,101)(55,107,60,159)(71,106,76,158)(72,154,77,102)(73,108,78,160)(74,156,79,104)(75,110,80,152)(81,115,86,128)(82,124,87,111)(83,117,88,130)(84,126,89,113)(85,119,90,122)(91,114,96,127)(92,123,97,120)(93,116,98,129)(94,125,99,112)(95,118,100,121), (1,117,15,112)(2,113,11,118)(3,119,12,114)(4,115,13,120)(5,111,14,116)(6,104,21,109)(7,110,22,105)(8,106,23,101)(9,102,24,107)(10,108,25,103)(16,121,36,126)(17,127,37,122)(18,123,38,128)(19,129,39,124)(20,125,40,130)(26,153,33,158)(27,159,34,154)(28,155,35,160)(29,151,31,156)(30,157,32,152)(41,56,65,78)(42,79,66,57)(43,58,67,80)(44,71,68,59)(45,60,69,72)(46,73,70,51)(47,52,61,74)(48,75,62,53)(49,54,63,76)(50,77,64,55)(81,138,97,150)(82,141,98,139)(83,140,99,142)(84,143,100,131)(85,132,91,144)(86,145,92,133)(87,134,93,146)(88,147,94,135)(89,136,95,148)(90,149,96,137), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,27,15,34)(2,26,11,33)(3,30,12,32)(4,29,13,31)(5,28,14,35)(6,38,21,18)(7,37,22,17)(8,36,23,16)(9,40,24,20)(10,39,25,19)(41,141,65,139)(42,150,66,138)(43,149,67,137)(44,148,68,136)(45,147,69,135)(46,146,70,134)(47,145,61,133)(48,144,62,132)(49,143,63,131)(50,142,64,140)(51,82,73,98)(52,81,74,97)(53,90,75,96)(54,89,76,95)(55,88,77,94)(56,87,78,93)(57,86,79,92)(58,85,80,91)(59,84,71,100)(60,83,72,99)(101,113,106,118)(102,112,107,117)(103,111,108,116)(104,120,109,115)(105,119,110,114)(121,153,126,158)(122,152,127,157)(123,151,128,156)(124,160,129,155)(125,159,130,154)>;

G:=Group( (1,135,40,142)(2,131,36,148)(3,137,37,144)(4,133,38,150)(5,139,39,146)(6,61,31,42)(7,67,32,48)(8,63,33,44)(9,69,34,50)(10,65,35,46)(11,143,16,136)(12,149,17,132)(13,145,18,138)(14,141,19,134)(15,147,20,140)(21,47,29,66)(22,43,30,62)(23,49,26,68)(24,45,27,64)(25,41,28,70)(51,103,56,155)(52,151,57,109)(53,105,58,157)(54,153,59,101)(55,107,60,159)(71,106,76,158)(72,154,77,102)(73,108,78,160)(74,156,79,104)(75,110,80,152)(81,115,86,128)(82,124,87,111)(83,117,88,130)(84,126,89,113)(85,119,90,122)(91,114,96,127)(92,123,97,120)(93,116,98,129)(94,125,99,112)(95,118,100,121), (1,117,15,112)(2,113,11,118)(3,119,12,114)(4,115,13,120)(5,111,14,116)(6,104,21,109)(7,110,22,105)(8,106,23,101)(9,102,24,107)(10,108,25,103)(16,121,36,126)(17,127,37,122)(18,123,38,128)(19,129,39,124)(20,125,40,130)(26,153,33,158)(27,159,34,154)(28,155,35,160)(29,151,31,156)(30,157,32,152)(41,56,65,78)(42,79,66,57)(43,58,67,80)(44,71,68,59)(45,60,69,72)(46,73,70,51)(47,52,61,74)(48,75,62,53)(49,54,63,76)(50,77,64,55)(81,138,97,150)(82,141,98,139)(83,140,99,142)(84,143,100,131)(85,132,91,144)(86,145,92,133)(87,134,93,146)(88,147,94,135)(89,136,95,148)(90,149,96,137), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,27,15,34)(2,26,11,33)(3,30,12,32)(4,29,13,31)(5,28,14,35)(6,38,21,18)(7,37,22,17)(8,36,23,16)(9,40,24,20)(10,39,25,19)(41,141,65,139)(42,150,66,138)(43,149,67,137)(44,148,68,136)(45,147,69,135)(46,146,70,134)(47,145,61,133)(48,144,62,132)(49,143,63,131)(50,142,64,140)(51,82,73,98)(52,81,74,97)(53,90,75,96)(54,89,76,95)(55,88,77,94)(56,87,78,93)(57,86,79,92)(58,85,80,91)(59,84,71,100)(60,83,72,99)(101,113,106,118)(102,112,107,117)(103,111,108,116)(104,120,109,115)(105,119,110,114)(121,153,126,158)(122,152,127,157)(123,151,128,156)(124,160,129,155)(125,159,130,154) );

G=PermutationGroup([(1,135,40,142),(2,131,36,148),(3,137,37,144),(4,133,38,150),(5,139,39,146),(6,61,31,42),(7,67,32,48),(8,63,33,44),(9,69,34,50),(10,65,35,46),(11,143,16,136),(12,149,17,132),(13,145,18,138),(14,141,19,134),(15,147,20,140),(21,47,29,66),(22,43,30,62),(23,49,26,68),(24,45,27,64),(25,41,28,70),(51,103,56,155),(52,151,57,109),(53,105,58,157),(54,153,59,101),(55,107,60,159),(71,106,76,158),(72,154,77,102),(73,108,78,160),(74,156,79,104),(75,110,80,152),(81,115,86,128),(82,124,87,111),(83,117,88,130),(84,126,89,113),(85,119,90,122),(91,114,96,127),(92,123,97,120),(93,116,98,129),(94,125,99,112),(95,118,100,121)], [(1,117,15,112),(2,113,11,118),(3,119,12,114),(4,115,13,120),(5,111,14,116),(6,104,21,109),(7,110,22,105),(8,106,23,101),(9,102,24,107),(10,108,25,103),(16,121,36,126),(17,127,37,122),(18,123,38,128),(19,129,39,124),(20,125,40,130),(26,153,33,158),(27,159,34,154),(28,155,35,160),(29,151,31,156),(30,157,32,152),(41,56,65,78),(42,79,66,57),(43,58,67,80),(44,71,68,59),(45,60,69,72),(46,73,70,51),(47,52,61,74),(48,75,62,53),(49,54,63,76),(50,77,64,55),(81,138,97,150),(82,141,98,139),(83,140,99,142),(84,143,100,131),(85,132,91,144),(86,145,92,133),(87,134,93,146),(88,147,94,135),(89,136,95,148),(90,149,96,137)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,27,15,34),(2,26,11,33),(3,30,12,32),(4,29,13,31),(5,28,14,35),(6,38,21,18),(7,37,22,17),(8,36,23,16),(9,40,24,20),(10,39,25,19),(41,141,65,139),(42,150,66,138),(43,149,67,137),(44,148,68,136),(45,147,69,135),(46,146,70,134),(47,145,61,133),(48,144,62,132),(49,143,63,131),(50,142,64,140),(51,82,73,98),(52,81,74,97),(53,90,75,96),(54,89,76,95),(55,88,77,94),(56,87,78,93),(57,86,79,92),(58,85,80,91),(59,84,71,100),(60,83,72,99),(101,113,106,118),(102,112,107,117),(103,111,108,116),(104,120,109,115),(105,119,110,114),(121,153,126,158),(122,152,127,157),(123,151,128,156),(124,160,129,155),(125,159,130,154)])

Matrix representation G ⊆ GL8(𝔽41)

1132000000
930000000
3202320000
28937390000
00002133335
000028393339
000036153028
000020212211
,
003410000
404039400000
2323100000
3738700000
0000103838
00000130
0000013400
00002828040
,
407000000
347000000
13635340000
168600000
0000353500
000064000
0000372876
000009340
,
2440000000
317000000
17020170000
38115210000
000032000
000028900
000036351928
00004063122

G:=sub<GL(8,GF(41))| [11,9,32,28,0,0,0,0,32,30,0,9,0,0,0,0,0,0,2,37,0,0,0,0,0,0,32,39,0,0,0,0,0,0,0,0,2,28,36,20,0,0,0,0,13,39,15,21,0,0,0,0,33,33,30,22,0,0,0,0,35,39,28,11],[0,40,23,37,0,0,0,0,0,40,23,38,0,0,0,0,34,39,1,7,0,0,0,0,1,40,0,0,0,0,0,0,0,0,0,0,1,0,0,28,0,0,0,0,0,1,13,28,0,0,0,0,38,3,40,0,0,0,0,0,38,0,0,40],[40,34,13,16,0,0,0,0,7,7,6,8,0,0,0,0,0,0,35,6,0,0,0,0,0,0,34,0,0,0,0,0,0,0,0,0,35,6,37,0,0,0,0,0,35,40,28,9,0,0,0,0,0,0,7,34,0,0,0,0,0,0,6,0],[24,3,17,38,0,0,0,0,40,17,0,1,0,0,0,0,0,0,20,15,0,0,0,0,0,0,17,21,0,0,0,0,0,0,0,0,32,28,36,40,0,0,0,0,0,9,35,6,0,0,0,0,0,0,19,31,0,0,0,0,0,0,28,22] >;

47 conjugacy classes

class 1 2A2B2C2D2E4A···4E4F···4M5A5B10A···10F10G10H10I10J20A···20L20M20N20O20P
order1222224···44···45510···101010101020···2020202020
size1111444···420···20222···288884···48888

47 irreducible representations

dim1111111222224444
type+++++++++++++--
imageC1C2C2C2C2C2C2D5D10D10D10D102+ (1+4)2- (1+4)D46D10D4.10D10
kernelC42.140D10C20.6Q8Dic5.14D4C23.D10C23.18D10Dic5⋊Q8C5×C4.4D4C4.4D4C42C22⋊C4C2×D4C2×Q8C10C10C2C2
# reps1244221228221248

In GAP, Magma, Sage, TeX

C_4^2._{140}D_{10}
% in TeX

G:=Group("C4^2.140D10");
// GroupNames label

G:=SmallGroup(320,1344);
// by ID

G=gap.SmallGroup(320,1344);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,758,219,184,1571,570,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽